Zellteilung

Aus eins mach zwei

Die Erfolgsgeschichte des Lebens auf der Erde beruht auf der erstaunlichen Fähigkeit von lebenden Zellen, sich in zwei Tochterzellen zu teilen. Während eines solchen Teilungsprozesses muss die äußere Zellmembran eine Reihe von Formänderungen durchlaufen, die schließlich zur Membranteilung führen. Wissenschaftlern am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, und am Max-Planck-Institut für Polymerforschung, Mainz, ist es jetzt gelungen, diese Prozesse durch kontrollierte Verankerung von Proteinen an den Membranen zu steuern und auf diese Weise künstliche Zellen zu teilen. Während des Teilungsprozesses muss die Zellmembran, die die Zelle nach außen abgrenzt, eine Folge von Formänderungen durchlaufen, die schließlich zu einer Teilung dieser Membran führen. Um den Teilungsprozess zuverlässig zu steuern, verlassen sich die heutigen, evolutionär optimierten Zellen auf hochspezialisierte Proteinkomplexe, die durch ATP-Hydrolyse angetrieben werden. Es stellt sich allerdings heraus, dass es viel einfachere Methoden zur kontrollierten Teilung gibt, was jetzt mittels künstlicher Zellen gezeigt wurde. Diese künstlichen Zellen bestehen aus großen Lipid-Vesikeln, die als äußere Hülle der Zelle eine Form geben (in der Abbildung rot dargestellt). Solche Vesikel bilden eine wichtige Eigenschaft lebender Zellen nach, indem sie ein „außen“ und „innen“ definieren. Das bedeutet sie bilden ein Kompartiment, das durch die umgebende Membran abgegrenzt ist. Außerdem haben die Membranen zwei Seiten: Eine Seite ist dem Inneren der künstlichen Zelle zugewandt, die andere zeigt nach außen. Solche künstlichen Zellen bleiben über Tage und Wochen stabil. Überraschenderweise sorgt die Membran nicht nur für Stabilität, sondern kann vielmehr auch eine Kraft erzeugen, die zur Teilung der künstlichen Zelle führt. So haben die Forscher ein universell einsetzbares Modul entwickelt, welches zusammen mit anderen Modulen z.B. zum Zellwachstum oder zum Verständnis der Zellteilung beitragen kann. Bild: © Max-Planck-Institut für Kolloid- und Grenzflächenforschung/Jan Steinkühler.

DOI: 10.1038/s41467-020-14696-0

Termine

  • 03.06.2020 - 06.06.2020

    EMBO | EMBL Symposium: "Microtubules: From Atoms to Complex Systems"
    virtuelles Symposium

  • 06.06.2020 - 09.06.2020

    The European Human Genetics Conference 2020
    virtuelle Konferenz

  • 30.06.2020 - 02.07.2020

    BIOKET 2020
    Lille, Frankreich

Zur Terminübersicht

Service

Stellenmarkt

Ihre Stellenanzeigen oder Stellengesuche sind willkommen!

Mitglieder der Gesellschaften können eine kostenfreie Fließtext-Anzeige im Heft oder eine Online-Anzeige schalten. Oder buchen Sie kostengünstig ein größeres Format (info@top-ad-online.de). Fragen Sie nach: biospektrum@springer.com

Stellenmarkt
Special

Aktuell: Antikörpertechnologie

Aufgrund ihrer hochspezifischen Bindungsfähigkeit sind Antikörper ein bedeutender Forschungsgegenstand in den Biowissenschaften. Als Meilenstein der Antikörperforschung gilt die Entwicklung der Hybridomtechnologie im Jahr 1975 durch Georges Köhler und César Milstein, die dafür 1984 mit dem Nobelpreis für Medizin gewürdigt wurden. Hierdurch konnten monoklonale Antikörper erstmals in großen Mengen und nahezu uneingeschränkter Spezifität hergestellt werden. Zahlreiche experimentelle Nachweismethoden – u. a. die Immunfluoreszenz, der Western Blot und der Enzymelinked Immunosorbent Assay (ELISA) – wurden damit realisierbar. Die Herstellung bi- und multispezifischer Antikörper hat in den vergangenen Jahren insbesondere die therapeutische Nutzung von Antikörpern, z. B. mittels dualem Targeting, revolutioniert. Aktuelle Forschungsarbeiten nutzen zudem die vorteilhaften Eigenschaften von Einzeldomänen-Antikörperfragmenten (Nanobodies), um das Anwendungspotenzial von Antikörpertechnologien weiter auszubauen. Heiko Dinter, Arghavan S. Zadeh und Katharina Schindowski Zimmermann beschreiben, wie spezifische Antikörper zeit- und kostengünstig durch die Verwendung von Phagen-Displays selektiert werden können. Benedikt Jedlitzke, Zahide Yilmaz und Henning D. Mootz präsentieren ihr Konzept zur lichtgesteuerten Aktivierung von Nanobodies. Oliver Seifert und Roland E. Kontermann erläuterten die von ihnen entwickelte Diabody-Ig-Technologie zur Herstellung von multivalenten und multispezifischen Antikörper-ähnlichen Molekülen. Hintergrundbild: © Sebastian Schreiter / Springer Medizin Verlag GmbH

Zu den Beiträgen
Neue Produkte

Funktionale Exosomen – schnell und einfach

Weitere Informationen unter: www.iba-lifesciences.com

Weitere Produkte
Marktübersicht

Aktuell: Thermocycler

Hier finden Sie alle Marktübersichten aus den Jahren 2016 bis 2020. Zuletzt erschienen ist: Thermocycler (03/20).

Zur Übersicht