Zellteilung

Aus eins mach zwei

Die Erfolgsgeschichte des Lebens auf der Erde beruht auf der erstaunlichen Fähigkeit von lebenden Zellen, sich in zwei Tochterzellen zu teilen. Während eines solchen Teilungsprozesses muss die äußere Zellmembran eine Reihe von Formänderungen durchlaufen, die schließlich zur Membranteilung führen. Wissenschaftlern am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, und am Max-Planck-Institut für Polymerforschung, Mainz, ist es jetzt gelungen, diese Prozesse durch kontrollierte Verankerung von Proteinen an den Membranen zu steuern und auf diese Weise künstliche Zellen zu teilen. Während des Teilungsprozesses muss die Zellmembran, die die Zelle nach außen abgrenzt, eine Folge von Formänderungen durchlaufen, die schließlich zu einer Teilung dieser Membran führen. Um den Teilungsprozess zuverlässig zu steuern, verlassen sich die heutigen, evolutionär optimierten Zellen auf hochspezialisierte Proteinkomplexe, die durch ATP-Hydrolyse angetrieben werden. Es stellt sich allerdings heraus, dass es viel einfachere Methoden zur kontrollierten Teilung gibt, was jetzt mittels künstlicher Zellen gezeigt wurde. Diese künstlichen Zellen bestehen aus großen Lipid-Vesikeln, die als äußere Hülle der Zelle eine Form geben (in der Abbildung rot dargestellt). Solche Vesikel bilden eine wichtige Eigenschaft lebender Zellen nach, indem sie ein „außen“ und „innen“ definieren. Das bedeutet sie bilden ein Kompartiment, das durch die umgebende Membran abgegrenzt ist. Außerdem haben die Membranen zwei Seiten: Eine Seite ist dem Inneren der künstlichen Zelle zugewandt, die andere zeigt nach außen. Solche künstlichen Zellen bleiben über Tage und Wochen stabil. Überraschenderweise sorgt die Membran nicht nur für Stabilität, sondern kann vielmehr auch eine Kraft erzeugen, die zur Teilung der künstlichen Zelle führt. So haben die Forscher ein universell einsetzbares Modul entwickelt, welches zusammen mit anderen Modulen z.B. zum Zellwachstum oder zum Verständnis der Zellteilung beitragen kann. Bild: © Max-Planck-Institut für Kolloid- und Grenzflächenforschung/Jan Steinkühler.

DOI: 10.1038/s41467-020-14696-0

Termine

  • 19.08.2020 - 20.08.2020

    12th International Conference on Microbiology, Antibiotics and Public Health
    Konferenz wird virtuell durchgeführt

  • 26.08.2020 - 27.08.2020

    Young Microbiologists Symposium
    Virtuelles Symposium

  • 26.08.2020

    LAB-SUPPLY Main
    Frankfurt

Zur Terminübersicht

Service

Stellenmarkt

Ihre Stellenanzeigen oder Stellengesuche sind willkommen!

Mitglieder der Gesellschaften können eine kostenfreie Fließtext-Anzeige im Heft oder eine Online-Anzeige schalten. Oder buchen Sie kostengünstig ein größeres Format (info@top-ad-online.de). Fragen Sie nach: biospektrum@springer.com

Stellenmarkt
Special

Aktuell: Zellbiologie / Zellanalytik

Die Zelle ist die kleinste Organisationseinheit des Lebens. Dieser Erkenntnis geht ein langwieriger Entwicklungsprozess voraus, der sich bis ins 17. Jahrhundert durch die erstmalige Beschreibung von Korkgewebe zurückverfolgen lässt. Spätestens seit der Formulierung der Zelltheorie durch Matthias Schleiden und Theodor Schwann in den Jahren 1838/39 hat sich die Zellbiologie als eigenständige Fachdisziplin etabliert. Eine wesentliche Voraussetzung für das Fortschreiten der Fachdisziplin ist die enge Verknüpfung an die Entwicklung innovativer zellanalytischer Methoden, allen voran der Mikroskopie. Ebenso zahlreich wie die Forschungsgebiete der Zellbiologie sind daher gegenwärtig die verwendeten Methoden der Zellanalytik, beispielsweise die Fluoreszenz- und Laser-Scanning-Mikroskopie, die Durchflusszytometrie oder das Echtzeit-Zell-Tracking. Abseits wichtiger Beiträge für die Grundlagenforschung finden sich zellbiologische Forschungsaktivitäten auch im biomedizinischen Kontext, z. B. bei der Kultivierung von Ersatzgewebe, wieder. Michael Heide und Wieland B. Huttner erläutern die genetischen Grundlagen und Mechanismen der Neocortex- Expansion während der Evolution des Menschen. Ulrich Blache und Martin Ehrbar stellen synthetische Hydrogele als neuartige 3D-Matrix für definierte Gewebemodelle zur Züchtung von künstlichen Ersatzgeweben vor. Johanna Chuchuy und Kollegen präsentieren das von ihnen entwickelte Retina-on-Chip-Modell, indem ein Retina-Organoid mit der Organ-on-a-chip-Technologie kombiniert wird. Hintergrundbild: Pankreas-Gewebe unter dem Rasterelektronenmikroskop, koloriert. © Science Photo Library / Image Source

Zu den Beiträgen
Neue Produkte

UVC für Blots - und Desinfektion von Schutzmasken

Weitere Informationen unter: www.labortechnik.com

Weitere Produkte
Marktübersicht

Aktuell: Thermocycler

Hier finden Sie alle Marktübersichten aus den Jahren 2016 bis 2020. Zuletzt erschienen ist: Thermocycler (03/20).

Zur Übersicht