Neuronale Netze

Forscher optimieren neuronale Netze auf einem vom Gehirn inspirierten Computersystem

Neuronale Netzwerke verteilen Berechnungen auf Neuronen, um komplexe Aufgaben zu lösen. Neue Forschungen zeigen nun, wie „kritische Zustände“ genutzt werden können, um künstliche neuronalen Netze zu optimieren, die auf neuromorpher, vom Gehirn inspirierter Hardware laufen. Die Studie wurde von Wissenschaftlern der Universität Heidelberg im Rahmen des Human Brain Project (HBP) zusammen mit Forschern des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) durchgefüht. Komplexe Netzwerke entwickeln eine Vielzahl besonderer Eigenschaften, wenn sie sich an einem „kritischen Punkt“ befinden. In diesem Zustand, an dem Systeme ihr Verhalten schnell grundlegend ändern und z.B. zwischen Ordnung und Chaos oder zwischen Stabilität und Instabilität wechseln können, werden viele Recheneigenschaften maximiert. Aus diesem Grund wird allgemein angenommen, dass der kritische Zustand für jede Berechnung in rückgekoppelten neuronalen Netzen, die heute in einer Reihe von Anwendungen der künstlichen Intelligenz zum Einsatz kommen, optimal ist. Die Forscher stellten diese Annahme nun auf den Prüfstand. Für die Studie nutzten sie ein einzigartiges vom Gehirn inspiriertes, analoges Computersystem. Die Untersuchung liefert ein genaueres Verständnis davon, wie der kollektive Netzwerkzustand auf unterschiedliche Aufgabenanforderungen abgestimmt werden sollte. Das Ergebnis könnte auch erklären, warum biologische neuronale Netze nicht unbedingt an einem kritischen Punkt operieren, sondern vielmehr in der dynamisch reichen Umgebung dieses Punktes in der sie ihre Recheneigenschaften auf die Anforderungen der Aufgabe abstimmen können. Darüber hinaus etabliert die Arbeit neuromorphe Hardware als einen schnellen und skalierbaren Ansatz, um die Auswirkungen biologischer Plastizitätsregeln auf neuronale Berechnungen und die Dynamik von Netzwerken zu untersuchen. Bild: Prototyp des BrainScales-2 Chips, auf dem das Experiment durchgeführt wurde. © Universität Heidelberg und MPIDS.

DOI: 10.1038/s41467-020-16548-3

Termine

  • 20.01.2021 - 21.01.2021

    86. Interantionale Grüne Woche Berlin
    Messe wird virtuell durchgeführt

  • 26.01.2021 - 28.01.2021

    Advances in Chemical Biology
    Konferenz wird virtuell durchgeführt

  • 29.01.2021 - 30.01.2021

    9. Norddeutsche Hormon- und Stoffwechseltage
    Konferenz wird virtuell durchgeführt

Zur Terminübersicht

Service

Stellenmarkt

Ihre Stellenanzeigen oder Stellengesuche sind willkommen!

Mitglieder der Gesellschaften können eine kostenfreie Fließtext-Anzeige im Heft oder eine Online-Anzeige schalten. Oder buchen Sie kostengünstig ein größeres Format (info@top-ad-online.de). Fragen Sie nach: biospektrum@springer.com

Stellenmarkt
Special

Aktuell: High Content Cell Imaging

Während in der klassischen Mikroskopie die Zellen fixiert werden müssen, was Zerstörungen und Artefakte mit sich bringt, können mit Fluoreszenz-basierten Mikroskopiemethoden, z. B. der laser scanning-Mikroskopie, lebende Zellen viel realistischer beobachtet werden. Dabei wird der Erkenntnisgewinn enorm erweitert, da nicht nur eine exakte Lokalisation von spezifischen Proteinen oder Nukleinsäuren in der Zelle bestimmt werden kann, sondern auch deren Bewegungen und Interaktionen in einer intakten, lebenden Zelle. Durch die resolution Evolution, bei der die Auflösungsgrenze drastisch nach unten verschoben wurde, z. B. mit der stochastic optical reconstruction microscopy (dSTORM), können sogar einzelne Moleküle in lebenden Zellen erfasst werden. Jan Schlegel und Markus Sauer zeigen in ihrem Beitrag, wie man mit der 3D-Gitter-Lichtblatt-dStorm-Technologie die Verteilung des Adhäsionsrezeptors CD56 in der Plasmamembran visualisieren kann. Anne Schlaitz wendet die konfokale laser scanning-Methode an, um in lebenden Zellen die Dynamik des ERs während der Mitose zu erforschen. Tobias Becker und Pavel Kielkowski stellen in ihrem Artikel eine Pronukleotid-Sonde für das in situ fluorescence Imaging zur Identifizierung und Beobachtung von AMPylierten Proteinen vor. Hintergrundbild: Sich teilende HeLa-Zellen unter dem Lichtmikroskop. Chromosomen im Zellnukleus (lila), Mikrotubuli im Zellskelett (Tubulin, grün) und Aktin (rot) sind erkennbar. Bild: Kevin Mackenzie, University of Aberdeen, Wellcome Collection, https://wellcomecollection.org/works/vjq5c26rCC unter der Lizenz BY 4.0, https://creativecommons.org/licenses/by/4.0.

Zu den Beiträgen
Neue Produkte

Nukleinsäure-Extraktion im Hochdurchsatz

Weitere Informationen unter: www.himedialabs.com

Weitere Produkte
Marktübersicht

Aktuell: Mikrotiterplatten

Hier finden Sie alle Marktübersichten aus den Jahren 2016 bis 2020. Zuletzt erschienen ist: Mikrotiterplatten(07/20).

Zur Übersicht