Laubblätter

Was Laubblätter im Herbst altern lässt

Laubbäume in den gemässigten Zonen bereiten sich auf den nahenden Winter vor. Sie stellen das Wachstum ein und entziehen dem Laub die Nährstoffe. Die Blätter fallen allmählich ab und sterben. Dieser Alterungsprozess der Blätter wird Seneszenz genannt. Er markiert im phänologischen Zyklus der Bäume das Ende der Vegetationsperiode, in der sie CO2 aufnehmen und Photosynthese betreiben. Mit der Klimaerwärmung hat sich die Vegetationsperiode in den vergangenen Jahrzehnten verlängert: Europäische Bäume treiben im Frühling rund zwei Wochen früher aus als noch vor hundert Jahren. Im Herbst fallen die Blätter heute gut sechs Tage später. Es wird allgemein erwartet, dass sich die Seneszenz in einem künftig wärmeren Klima weiter verspätet. Bäume könnten so mehr CO2 aus der Atmosphäre aufnehmen. Forschende der ETH Zürich um Studienleiter Constantin Zohner (Senior Scientist am Crowther Lab) gelangen nun zu einem gegenteiligen Befund: In einer Studie weisen sie bei Laubbäumen einen selbstregulierenden Mechanismus nach, der die Vegetationsperiode begrenzt: Eine erhöhte Photosynthese im Frühjahr und Sommer lässt die Blätter im Herbst früher altern. Damit dürfte sich der herbstliche Blattfall in Zukunft wider Erwarten verfrühen – und nicht weiter verspäten. Bislang ging die Wissenschaft generell davon aus, dass hauptsächlich die abnehmende Temperatur und Tageslänge im Herbst den Zeitpunkt der Blattseneszenz bestimmen. Nun denkt man, dass es mit dem Phänomen der limitierten Kohlenstoffsenke zu tun hat. Dabei begrenzen unter anderem knappe Bodennährstoffe wie etwa Stickstoff die CO2-Menge, die eine Pflanze während der Saison aufnehmen kann. Ist die maximale CO2-Menge erreicht, setzt die Blattalterung entsprechend früher ein. Die Analysen der Langzeitbeobachtungen von sechs europäischen Laubbaumarten legen nahe, dass die saisonale Photosynthese, die Herbsttemperatur und die Tageslänge primäre Treiber der Seneszenz sind. Anders die restlichen Faktoren: CO2-Gehalt, Sommertemperaturen, Lichtstärke und Niederschlag beeinflussen zwar die Photosynthese ganz direkt, wirken sich aber nur indirekt auf die Herbstseneszenz aus. Wärmere Herbste verzögern die Seneszenz tendenziell. Doch steigende CO2-Konzentration, wärmere Sommerperioden und ein früherer Blattaustrieb erhöhen zusehends die Photosynthese im Frühling und Sommer. Dadurch füllen sich die limitierten Kohlenstoffspeicher – sind sie vorzeitig gesättigt, verfrüht das die Seneszenz, was der Verzögerungstendenz aufgrund höherer Herbsttemperaturen entgegen wirkt. Bild: Im Herbst verfärbt sich das Laub. Das könnte in einem wärmeren Klima künftig früher der Fall sein – und nicht später, wie gemeinhin erwartet. Im Bild: Herbstlaub. Peter Rüegg / ETH Zürich.

DOI: 10.1116/science.abd8911

Termine

  • 20.01.2021 - 21.01.2021

    86. Interantionale Grüne Woche Berlin
    Messe wird virtuell durchgeführt

  • 26.01.2021 - 28.01.2021

    Advances in Chemical Biology
    Konferenz wird virtuell durchgeführt

  • 29.01.2021 - 30.01.2021

    9. Norddeutsche Hormon- und Stoffwechseltage
    Konferenz wird virtuell durchgeführt

Zur Terminübersicht

Service

Stellenmarkt

Ihre Stellenanzeigen oder Stellengesuche sind willkommen!

Mitglieder der Gesellschaften können eine kostenfreie Fließtext-Anzeige im Heft oder eine Online-Anzeige schalten. Oder buchen Sie kostengünstig ein größeres Format (info@top-ad-online.de). Fragen Sie nach: biospektrum@springer.com

Stellenmarkt
Special

Aktuell: High Content Cell Imaging

Während in der klassischen Mikroskopie die Zellen fixiert werden müssen, was Zerstörungen und Artefakte mit sich bringt, können mit Fluoreszenz-basierten Mikroskopiemethoden, z. B. der laser scanning-Mikroskopie, lebende Zellen viel realistischer beobachtet werden. Dabei wird der Erkenntnisgewinn enorm erweitert, da nicht nur eine exakte Lokalisation von spezifischen Proteinen oder Nukleinsäuren in der Zelle bestimmt werden kann, sondern auch deren Bewegungen und Interaktionen in einer intakten, lebenden Zelle. Durch die resolution Evolution, bei der die Auflösungsgrenze drastisch nach unten verschoben wurde, z. B. mit der stochastic optical reconstruction microscopy (dSTORM), können sogar einzelne Moleküle in lebenden Zellen erfasst werden. Jan Schlegel und Markus Sauer zeigen in ihrem Beitrag, wie man mit der 3D-Gitter-Lichtblatt-dStorm-Technologie die Verteilung des Adhäsionsrezeptors CD56 in der Plasmamembran visualisieren kann. Anne Schlaitz wendet die konfokale laser scanning-Methode an, um in lebenden Zellen die Dynamik des ERs während der Mitose zu erforschen. Tobias Becker und Pavel Kielkowski stellen in ihrem Artikel eine Pronukleotid-Sonde für das in situ fluorescence Imaging zur Identifizierung und Beobachtung von AMPylierten Proteinen vor. Hintergrundbild: Sich teilende HeLa-Zellen unter dem Lichtmikroskop. Chromosomen im Zellnukleus (lila), Mikrotubuli im Zellskelett (Tubulin, grün) und Aktin (rot) sind erkennbar. Bild: Kevin Mackenzie, University of Aberdeen, Wellcome Collection, https://wellcomecollection.org/works/vjq5c26rCC unter der Lizenz BY 4.0, https://creativecommons.org/licenses/by/4.0.

Zu den Beiträgen
Neue Produkte

Nukleinsäure-Extraktion im Hochdurchsatz

Weitere Informationen unter: www.himedialabs.com

Weitere Produkte
Marktübersicht

Aktuell: Mikrotiterplatten

Hier finden Sie alle Marktübersichten aus den Jahren 2016 bis 2020. Zuletzt erschienen ist: Mikrotiterplatten(07/20).

Zur Übersicht