Fibrillen

Mechanismus der Wechselwirkung von Proteinverklumpungen aufgeklärt

Viele neurodegenerative Erkrankungen wie auch die Alzheimer-Demenz werden ausgelöst, indem bestimmte Eiweißmoleküle (Proteine) verklumpen. Oligomere sind solche noch recht kleine Klümpchen, sie bestehen nur aus wenigen Proteinmolekülen. Neben Oligomeren entstehen auch größere Strukturen, zunächst die „Fibrillen“ und schließlich die „Plaques“. Alle diese Stoffe schädigen die Nervenzellen im Gehirn, aber die Oligomere gelten als besonders gefährlich. In Jahr 2018 beschrieb ein Forschungsteam um Jun.-Prof. Dr. Wolfgang Hoyer vom Institut für Physikalische Biologie der HHU gemeinsam mit Forschern der University South Florida in Chemical Science, dass Oligomere aktiv die Bildung von Fibrillen stören können. Sie schützen sich so selbst vor dem Abbau, da ihre Bestandteile sonst als Baumaterial für Fibrillen verbraucht werden. In ihren weiterführenden Forschungen fand das Team nun den Mechanismus, der dahintersteckt: Normalerweise entwickeln sich neue Fibrillenkeime bevorzugt an der Oberfläche bereits vorhandener Fibrillen, indem sich dort einzelne Proteine zu immer längeren Aggregaten verketten – die sogenannte „sekundäre Nukleation“. Die Forscher haben nun beobachtet, dass Oligomere eine starke Neigung besitzen, an die Oberfläche von Fibrillen zu binden, und diese sozusagen zu dekorieren. Dadurch verlieren die Fibrillenoberflächen ihre Fähigkeit zur Sekundärnukleation und die Neubildung von Fibrillen wird gehemmt. Die starke Bindung der Oligomere an die Fibrillenoberfläche ist auch aus einer weiteren Perspektive interessant. So beobachteten Neurologen, dass sich im Umfeld von Plaques eine Wolke von Oligomeren bildet, die anscheinend die Synapsen besonders schädigt. Fibrillen und Plaques können also möglicherweise der Ort sein, an dem sich toxische Oligomere anreichern und die Neuronen schädigen. Bild: Neue Fibrillen entstehen an der Oberfläche anderer Fibrillen, indem sich an dieser einzelne Proteinbausteine zu den längeren Ketten zusammenschließen. Koppeln Oligomere an die Fibrillenoberfläche, können dort keine neuen Fibrillen entstehen. © HHU / Filip Hasecke.

DOI: 10.1002/anie.202010098

Termine

  • 20.01.2021 - 21.01.2021

    86. Interantionale Grüne Woche Berlin
    Messe wird virtuell durchgeführt

  • 26.01.2021 - 28.01.2021

    Advances in Chemical Biology
    Konferenz wird virtuell durchgeführt

  • 29.01.2021 - 30.01.2021

    9. Norddeutsche Hormon- und Stoffwechseltage
    Konferenz wird virtuell durchgeführt

Zur Terminübersicht

Service

Stellenmarkt

Ihre Stellenanzeigen oder Stellengesuche sind willkommen!

Mitglieder der Gesellschaften können eine kostenfreie Fließtext-Anzeige im Heft oder eine Online-Anzeige schalten. Oder buchen Sie kostengünstig ein größeres Format (info@top-ad-online.de). Fragen Sie nach: biospektrum@springer.com

Stellenmarkt
Special

Aktuell: High Content Cell Imaging

Während in der klassischen Mikroskopie die Zellen fixiert werden müssen, was Zerstörungen und Artefakte mit sich bringt, können mit Fluoreszenz-basierten Mikroskopiemethoden, z. B. der laser scanning-Mikroskopie, lebende Zellen viel realistischer beobachtet werden. Dabei wird der Erkenntnisgewinn enorm erweitert, da nicht nur eine exakte Lokalisation von spezifischen Proteinen oder Nukleinsäuren in der Zelle bestimmt werden kann, sondern auch deren Bewegungen und Interaktionen in einer intakten, lebenden Zelle. Durch die resolution Evolution, bei der die Auflösungsgrenze drastisch nach unten verschoben wurde, z. B. mit der stochastic optical reconstruction microscopy (dSTORM), können sogar einzelne Moleküle in lebenden Zellen erfasst werden. Jan Schlegel und Markus Sauer zeigen in ihrem Beitrag, wie man mit der 3D-Gitter-Lichtblatt-dStorm-Technologie die Verteilung des Adhäsionsrezeptors CD56 in der Plasmamembran visualisieren kann. Anne Schlaitz wendet die konfokale laser scanning-Methode an, um in lebenden Zellen die Dynamik des ERs während der Mitose zu erforschen. Tobias Becker und Pavel Kielkowski stellen in ihrem Artikel eine Pronukleotid-Sonde für das in situ fluorescence Imaging zur Identifizierung und Beobachtung von AMPylierten Proteinen vor. Hintergrundbild: Sich teilende HeLa-Zellen unter dem Lichtmikroskop. Chromosomen im Zellnukleus (lila), Mikrotubuli im Zellskelett (Tubulin, grün) und Aktin (rot) sind erkennbar. Bild: Kevin Mackenzie, University of Aberdeen, Wellcome Collection, https://wellcomecollection.org/works/vjq5c26rCC unter der Lizenz BY 4.0, https://creativecommons.org/licenses/by/4.0.

Zu den Beiträgen
Neue Produkte

Nukleinsäure-Extraktion im Hochdurchsatz

Weitere Informationen unter: www.himedialabs.com

Weitere Produkte
Marktübersicht

Aktuell: Mikrotiterplatten

Hier finden Sie alle Marktübersichten aus den Jahren 2016 bis 2020. Zuletzt erschienen ist: Mikrotiterplatten(07/20).

Zur Übersicht