Wie Tiere räumliche Entscheidungen treffen

Räumliche Entscheidungen

Tiere so unterschiedlich wie Insekten und Fische verwenden denselben Algorithmus, um sich während der Fortbewegung für eines unter mehreren möglichen Zielen zu entscheiden. Das Bild zeigt die überlagerten Bewegungsbahnen simulierter Tiere, wie sie von dem Computermodell der Entscheidungsfindung vorhergesagt werden. Bildnachweis: Vivek Hari Sridhar / Max-Planck-Institut für Verhaltensbiologie

 

Ein internationales Team unter der Leitung von Forschenden der Universität Konstanz und des Max-Planck-Instituts für Verhaltensbiologie hat mit Hilfe von Virtual Reality (VR) Technologien den Algorithmus entschlüsselt, den Tiere verwenden, wenn sie sich während der Fortbewegung für eines unter mehreren möglichen Zielen entscheiden. Die Studie zeigt, dass Tiere die Komplexität ihrer Umwelt verarbeiten, indem sie die Welt auf aufeinanderfolgende Entscheidungen zwischen lediglich zwei Optionen – sogenannte binäre Entscheidungen – reduzieren. Diese Strategie führt zu einer äußerst effektiven Entscheidungsfindung, egal wie viele Optionen es ursprünglich gibt. Die Studie liefert den ersten Beweis für einen gemeinsamen Algorithmus, der die Entscheidungsfindung über Artgrenzen hinweg steuert. Sie legt nahe, dass grundlegende geometrische Prinzipien erklären können, wie und warum sich Tiere so bewegen, wie sie es tun.

Bei den meisten Tieren geht es im Leben darum, zu entscheiden, welchen Ort sie als nächstes aufsuchen. Egal ob rennend, schwimmend oder fliegend: fortlaufend müssen Tiere Entscheidungen darüber treffen, wo sie fressen, sich verstecken und mit wem sie sich zusammentun. Dank verschiedener Durchbrüche in der Neurobiologie während der letzten Jahrzehnte, haben wir heute ein besseres Bild davon, wie räumliche Informationen im Gehirn von Tieren verarbeitet werden. Ein internationales Forschungsteam hat jetzt dieses neurobiologische Wissen angewandt, um zu verstehen, wie Tiere zwischen im Raum verteilten Handlungsoptionen wählen.

An der Studie beteiligt waren Forschende aus den Fachbereichen Biologie, Ingenieurswesen und Physik aus Deutschland, vom Weizmann Institute of Science in Israel und der Eötvös Loránd Universität in Ungarn. Das interdisziplinäre Team ließ sich von der Neurobiologie, der Physik und dem Verhalten von Tieren inspirieren und konstruierte ein Computermodell der Entscheidungsfindung im Gehirn. Das Modell berücksichtigt, wie das Gehirn räumliche Handlungsoptionen darstellt – in diesem Fall die Richtung zu möglichen Zielen –, um zu verstehen, wie während der Fortbewegung räumliche Entscheidungen getroffen werden.

Das daraus resultierende Modell sagte voraus, dass das Gehirn komplexe Entscheidungen zwischen mehreren Optionen spontan in eine Reihe von einfacheren Entscheidungen mit jeweils nur zwei Handlungsoptionen zerlegt, bis nur noch eine Option – die letztlich gewählte – übrigbleibt. Ein Prozess, den Wissenschaftler*innen als „Bifurkation“ – also Aufgabelung – bezeichnen. Im Modell führte dies dazu, dass die simulierten Tiere eine Reihe von abrupten Richtungswechseln vollzogen, die jeweils mit dem Ausschluss einer der verbleibenden Optionen verbunden waren. Jeder Richtungswechsel war dabei das Ergebnis plötzlicher Veränderungen in der neuronalen Dynamik, je nachdem in welchem geometrischen Verhältnis das Tier gerade zu den verbliebenen Handlungsoptionen stand.

Um ihre theoretischen Vorhersagen bei echten fliegenden, laufenden und schwimmenden Tieren zu testen, nutzen die Forschenden immersive VR-Technologie für Verhaltensexperimente mit Fruchtfliegen, Wüstenheuschrecken und Zebrafischen. Die VR-Technologie ermöglichte es den Forschenden, die Tiere in offenen, fotorealistischen Umgebungen zu testen und gleichzeitig die Bewegungen der Tiere während der Entscheidungsfindung über viele Wiederholungsexperimente hinweg präzise zu messen. Das Ergebnis: Bei allen untersuchten Arten wurden genau die Aufgabelungen in den überlagerten Bewegungsbahnen festgestellt, die durch das Modell vorhergesagt worden waren.

Die Wissenschaftler*innen fanden außerdem heraus, dass die selben geometrischen Prinzipien wahrscheinlich auch für die räumliche Entscheidungsfindung von Tierkollektiven, wie zum Beispiel umherziehenden Herden oder Vogelschwärmen, gelten.