Zellatmung: Das letztes Puzzlestück

Zellatmung

Superkomplex CIII2CIV. Beim Zusammenbau zu einem Superkomplex werden die beiden Teile von CIII2CIV durch ein Molekül zusammengehalten, das wie ein Angelhaken wirkt. So wird die Zellatmung optimiert. Verena Resch Luminous Lab IST. © Verena Resch Luminous Lab IST Austria.

 

 

Um ihre vielfältigen Aufgaben zu erfüllen, benötigen Zellen Energie. In den Kraftwerken der Zelle, den so genannten Mitochondrien, wird die Energie aus unserer Nahrung in das Molekül ATP umgewandelt. Es dient als eine Art Treibstoff, der die meisten zellulären Arbeitsvorgänge antreibt – vom Zusammenziehen der Muskeln bis zum Aufbau des Erbguts. Professor Leonid Sazanov und Irene Vercellino vom Institute of Science and Technology (IST) Austria zeigen nun erstmals, wie genau der für diesen Prozess wesentliche Zusammenschluss von Proteinen in Säugetierzellen aussieht.

Mit Hilfe der Kryo-Elektronenmikroskopie, einer Technik, die es Forschenden ermöglicht, besonders kleine Proben in ihrem natürlichen Zustand zu betrachten, konnte die genaue Struktur des sogenannten Superkomplexes CIII2CIV gezeigt werden. Dieser Zusammenschluss von Proteinen pumpt geladene Teilchen, Protonen, durch die Membran der Mitochondrien. Mit ihrer Hilfe kann der Energieumwandlungsprozess in den Zellen gestartet werden. Superkomplexe erfüllen also eine ähnliche Funktion wie Starterbatterien bei einem Auto. Bisher wurde Superkomplexes CIII2CIV nur in Pflanzen- und Hefezellen beschrieben, wo er eine ganz andere Form annimmt, wie die Forscher:innen nun herausgefunden haben. Um zu verstehen, wie genau die Energiegewinnung in tierischen Zellen wie den unseren funktioniert, haben die Wissenschafter:innen nun Zellen von Mäusen und Schafen unter die Lupe genommen und wurden überrascht.

Außerdem zeigen die Forschenden, dass der Superkomplex CIII2CIV zwei verschiedene Formen annimmt – eine geschlossene und eine offene oder reife Form.  Andererseits hat es für Tiere große Vorteile, wenn sich die beiden Komplexe zu einem Superkomplex zusammentun – das beschleunigt nämlich ihre chemischen Reaktionen. Bereits zuvor war bekannt, dass Mäuse und Zebrafische, denen das verbindende SCAF1-Molekül fehlt, deutlich kleiner, weniger fit und weniger fruchtbar sind. Nun zeigen Vercellino und Sazanov welche Rolle das Molekül bei der Bildung des Superkomplexes CIII2CIV genau übernimmt und wie es den zellulären Stoffwechsel optimiert. Es war das letzte Puzzlestück: Zusammen mit ihren früheren Studien haben Sazanov und sein Team nun die Strukturen aller Superkomplexe in Säugetiermitochondrien beschrieben. Damit legen sie den Grundstein für neue Behandlungsmöglichkeiten von mitochondrialen Erkrankungen.